Unit 1

1. Index Notation

- It is the notation for vector, tensor equations. For example: $\vec{F}=m \vec{a}$
- In cartesian co-ordinates $F_{1}=m a_{1}, F_{2}=m a_{2}, F_{3}=m a_{3}$
- In index notation $F_{i}=m a_{i}$ for $\mathrm{i}=1,2,3$
- Similarly, $a_{i}+\alpha b_{i}=c_{i}$ is the index notation for $\vec{a}+\alpha \vec{b}=\vec{c}$ for $\mathrm{i}=1,2,3$

Rule 1: The range of indices is removed. It is assumed that the range is known from the context.
$a_{i}+\alpha b_{j}=c_{i}$ for $\mathrm{i}=1,2,3$; for $\mathrm{j}=1,2,3$. The notation is not valid
Reason 1: Different free indices, i and j
Reason 2: Range of indices is defined
Corollary to rule 1: The free index in each term of the equation has to be the same.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right], C=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \text { and } C=A+3 B
$$

Index notation
$C_{i j}=A_{i j}+3 B_{i j} \rightarrow$ Valid $\quad \mathrm{i}$ and j are free indices

$$
C_{i k}=A_{i j}+3 B_{i j} \rightarrow \text { Invalid }
$$

For

$$
\begin{gathered}
C=A+3 B^{T} \\
C_{i j}=A_{i j}+3 B_{j i} \rightarrow \text { Valid }
\end{gathered}
$$

Rule 2: Einstein summation Convention

- If an index repeats (dummy index), it means summation over that index
- For example:

$$
\begin{array}{r}
\vec{a} \cdot \vec{b}=\gamma \\
\Rightarrow a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\gamma \\
\Rightarrow \gamma=\sum_{i=1}^{3} a_{i} b_{i}=\sum a_{i} b_{i} \rightarrow a_{i} b_{i} \\
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]
\end{array}
$$

- Matrix notation: $A y=B$
- Index Notation

$$
\begin{array}{r}
a_{11} y_{1}+a_{12} y_{2}=B_{1} \Rightarrow \sum_{j=1}^{2} a_{1 j} y_{j}=B_{1} \\
a_{21} y_{1}+a_{22} y_{2}=B_{2} \Rightarrow \sum_{j=1}^{2} a_{2 j} y_{j}=B_{2} \\
\Rightarrow \sum_{i, j=1}^{2} a_{i j} y_{j}=B_{i} \text { or } a_{i j} y_{j}=B_{i}
\end{array}
$$

- Notice:

Free index, i. Is same on both sides
j is a dummy index

Corollary to rule 2

In a single term, an index should not be repeated more than two times.
For example

$$
\begin{gathered}
(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{b} \\
\left(a_{i} \cdot b_{i}\right) c_{j}-\left(c_{i} \cdot a_{i}\right) b_{j} \\
\left(a_{i} \cdot b_{i}\right) c_{i} \rightarrow \text { not valid }
\end{gathered}
$$

Kronecker Delta Function, $\delta_{i j}$

$$
\begin{aligned}
& \delta_{i j}=1 \text { if } i=j \\
& \quad \delta_{i j}=0 \text { if } i \neq j
\end{aligned}
$$

In a 2D matrix

$$
\delta=I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

An important property of Kronecker Delta Function

$$
\delta_{i j} u_{j}=u_{i}
$$

TASK: Prove it

The Alternating Tensor, $\varepsilon_{i j k}$

$$
\begin{gathered}
\varepsilon_{i j k}=1 \text { if } i j k=123,231 \text { or } 312 \\
\varepsilon_{i j k}=-1 \text { if } i j k=213,132 \text { or } 321 \\
\varepsilon_{i j k}=0 \text { otherwise }
\end{gathered}
$$

It can be used to define cross product
If $\vec{c}=\vec{a} \times \vec{b}$, then $c_{i}=\varepsilon_{i j k} a_{j} b_{k}$

Also,

$$
\varepsilon_{i j k} \varepsilon_{l m k}=\varepsilon_{i j k} \varepsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
$$

2. Transformation of axes

If $x y z$ is the orthogonal coordinate system in which stress, σ is represented and $x^{\prime} y^{\prime} z^{\prime}$ is the new axis in which σ is to be represented, then the general form of the transformation is:

$$
\begin{gathered}
\sigma_{x x^{\prime}}=l_{x^{\prime} x} l_{x^{\prime} x} \sigma_{x x}+l_{x^{\prime} y} l_{x^{\prime} x} \sigma_{y x}+l_{x^{\prime} z} l_{x^{\prime} x} \sigma_{z x}+l_{x^{\prime} x} l_{x^{\prime} y} \sigma_{x y}+l_{x^{\prime} y} l_{x^{\prime} y} \sigma_{y y}+l_{x^{\prime} z} l_{x^{\prime} y} \sigma_{z y} \\
+l_{x^{\prime} x} l_{x^{\prime} z} \sigma_{x z}+l_{x^{\prime} y} l_{x^{\prime} z} \sigma_{y z}+l_{x^{\prime} z} l_{x^{\prime} z} \sigma_{z z}
\end{gathered}
$$

And

$$
\begin{gathered}
\sigma_{x^{\prime} y^{\prime}}=l_{x^{\prime} x} l_{y^{\prime} x} \sigma_{x x}+l_{x^{\prime} y} l_{y^{\prime} x} \sigma_{y x}+l_{x^{\prime} z}^{\prime} l_{y^{\prime} x} \sigma_{z x}+l_{x^{\prime} x} l_{y^{\prime} y} \sigma_{x y}+l_{x^{\prime} y} l_{y^{\prime} y} \sigma_{y y} \\
+l_{x^{\prime} z} l_{y^{\prime} y} \sigma_{z y}+l_{x^{\prime} x} l_{y^{\prime} z} \sigma_{x z}+l_{x^{\prime} y} l_{y^{\prime} z} \sigma_{y z}+l_{x^{\prime} z} l_{y^{\prime} z} \sigma_{z z}
\end{gathered}
$$

Where $l_{x^{\prime} x}$ is the cosine of the angle between x^{\prime} and x and hence the rest.

3. Stress

- Stress, σ, is defined as the intensity of force at a point

$$
\sigma=\partial F / \partial A \text { as } \partial A \rightarrow 0
$$

- If the state of stress is the same everywhere in a body, $\sigma=F / A$
- A normal stress (compressive or tensile) is the one in which force acts on the area that is normal to it whereas in shear force, force is parallel to the area.
- $\sigma_{x x}$ indicates that the force is in x-direction and it acts on a plane normal to x
- $\sigma_{x x}$ indicates that the force is in y -direction and is acting on a plane normal to x
- In tensor notation, the state of stress is expressed as

$$
\begin{gathered}
\sigma_{i j}=\left[\begin{array}{lll}
\sigma_{x x} & \sigma_{y x} & \sigma_{z x} \\
\sigma_{x y} & \sigma_{y y} & \sigma_{z y} \\
\sigma_{x z} & \sigma_{y z} & \sigma_{z z}
\end{array}\right] \\
\sigma_{i j}=\frac{F_{i}}{A_{j}} \\
\sigma_{x x}=\sigma_{x}, \sigma_{x y}=\tau_{x y} \\
\sigma_{i j}=\sigma_{j i} \text { or } \tau_{i j}=\tau_{j i}
\end{gathered}
$$

Principal Stresses

In a set of axis where no shear stresses exist and only normal stresses are present, these normal stresses, σ_{1}, σ_{2} and σ_{3} are called principal stresses and 1,2 and 3 axes are called the principal stress axes. The magnitude of the principal stresses, σ_{p}, are the roots of the equation

$$
\sigma_{p}^{3}-I_{1} \sigma_{p}^{2}-I_{2} \sigma_{p}-I_{3}=0
$$

Where

$$
\begin{gathered}
I_{1}=\sigma_{x x}+\sigma_{y y}+\sigma_{z z}=\frac{-p}{3} \text {, where } p \text { is pressure } \\
I_{2}=\sigma_{y z}^{2}+\sigma_{z x}^{2}+\sigma_{x y}^{2}-\sigma_{y y} \sigma_{z z}-\sigma_{z z} \sigma_{x x}-\sigma_{x x} \sigma_{y y} \\
I_{3}=\sigma_{x x} \sigma_{y y} \sigma_{z z}+2 \sigma_{y z} \sigma_{z x} \sigma_{x y}-\sigma_{x x} \sigma_{y z}^{2}-\sigma_{y y} \sigma_{z x}^{2}-\sigma_{z z} \sigma_{x y}^{2}
\end{gathered}
$$

I_{1}, I_{2} and I_{3} are called stress invariants
In terms of principal stresses, the invariants are

$$
\begin{gathered}
I_{1}=\sigma_{1}+\sigma_{2}+\sigma_{3} \\
I_{3}=-\sigma_{22} \sigma_{33}-\sigma_{33} \sigma_{11}-\sigma_{11} \sigma_{22} \\
I_{3}=\sigma_{11} \sigma_{22} \sigma_{33}
\end{gathered}
$$

Plane Stress

- A stress condition in which the stresses in one of the primary directions is zero

Deviatoric Stress or stress deviator, σ^{\prime}
Component of the total stress that causes plastic deformation

Hydrostatic stress, $\sigma^{\prime \prime}$

The other component of stress (apart from stress deviator) is called spherical or hydrostatic stress

$$
\sigma^{\prime \prime}=\frac{\sigma_{1}+\sigma_{2}+\sigma_{3}}{3}=-p
$$

The stress devaitor is given by

$$
\begin{aligned}
& \sigma_{1}^{\prime}=\sigma_{1}-\sigma_{1}^{\prime \prime}=\frac{2 \sigma_{1}-\sigma_{2}-\sigma_{3}}{3} \\
& \sigma_{2}^{\prime}=\sigma_{2}-\sigma_{2}^{\prime \prime}=\frac{2 \sigma_{2}-\sigma_{1}-\sigma_{3}}{3} \\
& \sigma_{3}^{\prime}=\sigma_{3}-\sigma_{3}^{\prime \prime}=\frac{2 \sigma_{3}-\sigma_{2}-\sigma_{1}}{3}
\end{aligned}
$$

The Principal Stress Deviators are the roots of the cubic equation

$$
\begin{gathered}
\left(\sigma^{\prime}\right)^{3}-J_{2} \sigma^{\prime}-J_{3}=0 \\
J_{2}=\frac{-1}{6}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}-\left(\sigma_{2}-\sigma_{3}\right)^{2}-\left(\sigma_{3}-\sigma_{1}\right)^{2}\right] \\
J_{3}=\frac{1}{27}\left[\left(2 \sigma_{1}-\sigma_{2}-\sigma_{3}\right)-\left(2 \sigma_{2}-\sigma_{3}-\sigma_{1}\right)-\left(2 \sigma_{3}-\sigma_{1}-\sigma_{2}\right)\right]
\end{gathered}
$$

4. Strain

- Linear strain is defined as the ratio of change in length to the original length of the same dimension
- Engineering or normal Strain, $e=\frac{\delta}{L_{o}}=\frac{\Delta L}{L_{o}}=\frac{L-L_{o}}{L_{o}}$
- True strain, $\varepsilon=\ln \frac{L}{L_{o}}$, where L is the final length

$$
\varepsilon=\ln \frac{L}{L_{o}}=\ln (1+e)
$$

- True Stress, $\sigma=s(1+e)$
- The transformation of axes for strain are same as that for stress (refer to transformation of stress)

Task: Using the property for shear stresses and strains ($\sigma_{12}=\sigma_{21}$ and same for strain), rewrite their transformation of axes equation.

Plane Strain

- Strain condition where all the deformation is confined to xy or yz or xz plane
- Volumetric Strain, $\Delta=e_{1}+e_{2}+e_{3}$
- In an analogous manner, the strain at any point can be divided into deviator and hydrostatic strain

$$
\begin{aligned}
e_{1}^{\prime}= & e_{1}-e_{1}^{\prime \prime}=\frac{2 e_{1}-e_{2}-e_{3}}{3} \\
e_{2}^{\prime}= & e_{2}-e_{2}^{\prime \prime}=\frac{2 e_{2}-e_{1}-e_{3}}{3} \\
e_{3}^{\prime}= & e_{3}-e_{3}^{\prime \prime}=\frac{2 e_{3}-e_{2}-e_{1}}{3} \\
& e^{\prime \prime}=\frac{e_{1}+e_{2}+e_{3}}{3}
\end{aligned}
$$

5. Stress-strain relations

- $\sigma_{x}=E e_{x}$ Hooke's Law
- Generalised Hooks law

$$
\begin{aligned}
& e_{1}=\frac{1}{E}\left[\sigma_{1}-v\left(\sigma_{2}+\sigma_{3}\right)\right] \\
& e_{2}=\frac{1}{E}\left[\sigma_{2}-v\left(\sigma_{3}+\sigma_{1}\right)\right] \\
& e_{3}=\frac{1}{E}\left[\sigma_{3}-v\left(\sigma_{2}+\sigma_{1}\right)\right]
\end{aligned}
$$

$v=$ Poisson's ratio
$=$ ratio of strain in the transverse direction andin longitudinal direction

