Unit 1

1. Index Notation

- It is the notation for vector, tensor equations. For example: $\vec{F} = m\vec{a}$
- In cartesian co-ordinates $F_1 = ma_1$, $F_2 = ma_2$, $F_3 = ma_3$
- In index notation $F_i = ma_i$ for i=1,2,3
- Similarly, $a_i + \alpha b_i = c_i$ is the index notation for $\vec{a} + \alpha \vec{b} = \vec{c}$ for i=1,2,3

<u>Rule 1</u>: The range of indices is removed. It is assumed that the range is known from the context.

 $a_i + \alpha b_j = c_i$ for i=1,2,3; for j=1,2,3. The notation is not valid

Reason 1: Different free indices, i and j

Reason 2: Range of indices is defined

Corollary to rule 1: The free index in each term of the equation has to be the same.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, $C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$ and $C = A + 3B$

Index notation

$$C_{ij} = A_{ij} + 3B_{ij} \rightarrow Valid$$
 i and j are free indices

$$C_{ik} = A_{ij} + 3B_{ij} \rightarrow Invalid$$

For

$$C = A + 3B^T$$

$$C_{ij} = A_{ij} + 3B_{ii} \rightarrow Valid$$

Rule 2: Einstein summation Convention

- If an index repeats (dummy index), it means summation over that index
- For example:

$$\vec{a}.\vec{b}=\gamma$$

$$\Rightarrow a_1b_1 + a_2b_2 + a_3b_3 = \gamma$$

$$\Rightarrow \gamma = \sum_{i=1}^{3} a_i b_i = \sum_{i=1}^{3} a_i b_i \rightarrow a_i b_i$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

- Matrix notation: Ay = B
- Index Notation

$$\begin{aligned} a_{11}y_1 + a_{12}y_2 &= B_1 \Longrightarrow \sum_{j=1}^2 a_{1j} \, y_j = B_1 \quad (1) \\ a_{21}y_1 + a_{22}y_2 &= B_2 \Longrightarrow \sum_{j=1}^2 a_{2j} \, y_j = B_2 \quad (2) \\ &\Rightarrow \sum_{i,j=1}^2 a_{ij}y_j = B_i \ or \ a_{ij}y_j = B_i \end{aligned}$$

• Notice:

Free index, i. Is same on both sides

j is a dummy index

Corollary to rule 2

In a single term, an index should not be repeated more than two times.

For example

$$(\vec{a}.\vec{b})\vec{c} - (\vec{c}.\vec{a})\vec{b}$$

 $(a_i.b_i)c_j - (c_i.a_i)b_j$
 $(a_i.b_i)c_i \to not \ valid$

Kronecker Delta Function, δ_{ij}

$$\delta_{ij} = 1 \text{ if } i = j$$

$$\delta_{ij} = 0 \text{ if } i \neq j$$

In a 2D matrix

$$\delta = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

An important property of Kronecker Delta Function

$$\delta_{ij}u_j=u_i$$

TASK: Prove it

The Alternating Tensor, ε_{iik}

$$arepsilon_{ijk}=1 \ if \ ijk=123,231 \ or \ 312$$
 $arepsilon_{ijk}=-1 \ if \ ijk=213,132 \ or \ 321$ $arepsilon_{ijk}=0 \ otherwise$

It can be used to define cross product

If
$$\vec{c} = \vec{a} \times \vec{b}$$
, then $c_i = \varepsilon_{ijk} a_i b_k$

$$\varepsilon_{ijk}\varepsilon_{lmk} = \varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

2. Transformation of axes

If xyz is the orthogonal coordinate system in which stress, σ is represented and x'y'z' is the new axis in which σ is to be represented, then the general form of the transformation

$$\sigma_{xx'} = l_{x'x} l_{x'x} \sigma_{xx} + l_{x'y} l_{x'x} \sigma_{yx} + l_{x'z} l_{x'x} \sigma_{zx} + l_{x'x} l_{x'y} \sigma_{xy} + l_{x'y} l_{x'y} \sigma_{yy} + l_{x'z} l_{x'y} \sigma_{zy} + l_{x'x} l_{x'z} \sigma_{xz} + l_{x'y} l_{x'z} \sigma_{yz} + l_{x'z} l_{x'z} \sigma_{zz}$$

And

$$\begin{split} \sigma_{x'y'} &= l_{x'x} l_{y'x} \sigma_{xx} + l_{x'y} l_{y'x} \sigma_{yx} + l_{x'z} l_{y'x} \sigma_{zx} + l_{x'x} l_{y'y} \sigma_{xy} + l_{x'y} l_{y'y} \sigma_{yy} \\ &+ l_{x'z} l_{y'y} \sigma_{zy} + l_{x'x} l_{y'z} \sigma_{xz} + l_{x'y} l_{y'z} \sigma_{yz} + l_{x'z} l_{y'z} \sigma_{zz} \end{split}$$

Where $l_{x'x}$ is the cosine of the angle between x' and x and hence the rest.

3. Stress

Stress, σ , is defined as the intensity of force at a point

$$\sigma = \frac{\partial F}{\partial A} \text{ as } \partial A \to 0$$

- If the state of stress is the same everywhere in a body, $\sigma = \frac{F}{A}$
- A normal stress (compressive or tensile) is the one in which force acts on the area that is normal to it whereas in shear force, force is parallel to the area.
- σ_{xx} indicates that the force is in x-direction and it acts on a plane normal to x
- σ_{xx} indicates that the force is in y-direction and is acting on a plane normal to x

In tensor notation, the state of stress is expressed as
$$\sigma_{ij} = \begin{bmatrix} \sigma_{xx} & \sigma_{yx} & \sigma_{zx} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{zy} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{bmatrix}$$

$$\sigma_{ij} = \frac{F_i}{A_i}$$

$$\sigma_{xx} = \sigma_x$$
, $\sigma_{xy} = \tau_{xy}$

$$\sigma_{ij} = \sigma_{ji} \text{ or } \tau_{ij} = \tau_{ji}$$

Principal Stresses

In a set of axis where no shear stresses exist and only normal stresses are present, these normal stresses, σ_1, σ_2 and σ_3 are called principal stresses and 1,2 and 3 axes are called the principal stress axes. The magnitude of the principal stresses, σ_p , are the roots of the equation

$$\sigma_p^3 - I_1 \sigma_p^2 - I_2 \sigma_p - I_3 = 0$$

Where

$$\begin{split} I_1 &= \sigma_{xx} + \sigma_{yy} + \sigma_{zz} = \frac{-p}{3}, where \ p \ is \ pressure \\ I_2 &= \sigma_{yz}^2 + \sigma_{zx}^2 + \sigma_{xy}^2 - \sigma_{yy}\sigma_{zz} - \sigma_{zz}\sigma_{xx} - \sigma_{xx}\sigma_{yy} \\ I_3 &= \sigma_{xx}\sigma_{yy}\sigma_{zz} + 2\sigma_{yz}\sigma_{zx}\sigma_{xy} - \sigma_{xx}\sigma_{yz}^2 - \sigma_{yy}\sigma_{zx}^2 - \sigma_{zz}\sigma_{xy}^2 \end{split}$$

 I_1 , I_2 and I_3 are called stress invariants

In terms of principal stresses, the invariants are

$$I_1 = \sigma_1 + \sigma_2 + \sigma_3$$

$$I_3 = -\sigma_{22}\sigma_{33} - \sigma_{33}\sigma_{11} - \sigma_{11}\sigma_{22}$$

$$I_3 = \sigma_{11}\sigma_{22}\sigma_{33}$$

Plane Stress

• A stress condition in which the stresses in one of the primary directions is zero

Deviatoric Stress or stress deviator, σ'

Component of the total stress that causes plastic deformation

Hydrostatic stress, σ''

The other component of stress (apart from stress deviator) is called spherical or hydrostatic stress

$$\sigma'' = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} = -p$$

The stress devaitor is given by

$$\sigma_{1}' = \sigma_{1} - \sigma_{1}'' = \frac{2\sigma_{1} - \sigma_{2} - \sigma_{3}}{3}$$

$$\sigma_{2}' = \sigma_{2} - \sigma_{2}'' = \frac{2\sigma_{2} - \sigma_{1} - \sigma_{3}}{3}$$

$$\sigma_{3}' = \sigma_{3} - \sigma_{3}'' = \frac{2\sigma_{3} - \sigma_{2} - \sigma_{1}}{3}$$

The Principal Stress Deviators are the roots of the cubic equation

$$(\sigma')^3 - J_2 \sigma' - J_3 = 0$$

$$J_2 = \frac{-1}{6} [(\sigma_1 - \sigma_2)^2 - (\sigma_2 - \sigma_3)^2 - (\sigma_3 - \sigma_1)^2]$$

$$J_3 = \frac{1}{27} [(2\sigma_1 - \sigma_2 - \sigma_3) - (2\sigma_2 - \sigma_3 - \sigma_1) - (2\sigma_3 - \sigma_1 - \sigma_2)]$$

4. Strain

- Linear strain is defined as the ratio of change in length to the original length of the same dimension
- Engineering or normal Strain, $e = \frac{\delta}{L_o} = \frac{\Delta L}{L_o} = \frac{L L_o}{L_o}$
- True strain, $\varepsilon = \ln \frac{L}{L_o}$, where L is the final length

$$\varepsilon = \ln \frac{L}{L_0} = \ln(1 + e)$$

- True Stress, $\sigma = s(1 + e)$
- The transformation of axes for strain are same as that for stress (refer to transformation of stress)

Task: Using the property for shear stresses and strains ($\sigma_{12} = \sigma_{21}$ and same for strain), rewrite their transformation of axes equation.

Plane Strain

- Strain condition where all the deformation is confined to xy or yz or xz plane
- Volumetric Strain, $\Delta = e_1 + e_2 + e_3$
- In an analogous manner, the strain at any point can be divided into deviator and hydrostatic strain

$$e'_1 = e_1 - e''_1 = \frac{2e_1 - e_2 - e_3}{3}$$

$$e'_2 = e_2 - e''_2 = \frac{2e_2 - e_1 - e_3}{3}$$

$$e'_3 = e_3 - e''_3 = \frac{2e_3 - e_2 - e_1}{3}$$

$$e'' = \frac{e_1 + e_2 + e_3}{3}$$

5. Stress-strain relations

- $\sigma_x = Ee_x$ Hooke's Law
- Generalised Hooks law

$$e_{1} = \frac{1}{E} [\sigma_{1} - \nu(\sigma_{2} + \sigma_{3})]$$

$$e_{2} = \frac{1}{E} [\sigma_{2} - \nu(\sigma_{3} + \sigma_{1})]$$

$$e_3 = \frac{1}{F} [\sigma_3 - \nu(\sigma_2 + \sigma_1)]$$

v = Poisson's ratio

= ratio of strain in the transverse direction and in longitudinal direction